Opinion: Calculating Cancer

How a growing partnership between oncologists and mathematicians is moving research forward.

Written byAlexander (Sandy) Anderson and Robert Gatenby
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

SXC.HU, HISKSCancer is a dynamic, adaptive system consisting of billions of normal and tumor cells interacting at multiple spatial and temporal scales. To many cancer biologists and oncologists, the complexity of cancer seems beyond comprehension. So it is not surprising that attempts to develop mathematical models of cancer and therapies have typically been dismissed. Cancer, it would appear to some, is too complicated to model. But this bias ignores an increasingly mundane component of modern life—weather forecasts. By using sophisticated computational models to integrate large, continuously updated datasets organized with the fundamental laws of physics, meteorologists can characterize complex weather systems sufficiently well to accurately predict their behavior.

In 2008, our institution, Moffitt Cancer Center, eschewed the conventional wisdom and formed the department of integrated mathematical oncology (IMO). The applied mathematicians, physicists, and computer scientists who make up the IMO are expected to collaborate with cancer biologists and oncologists to examine cancer as an evolving complex, dynamical system. The goal is not to do new mathematics, but to use mathematics as a tool to do new biology. IMO brings a fresh perspective that focuses on identifying key principles and parameters of a given cancer rather than the more traditional reductionist view of ever more detailed investigation of its component parts. We hold an annual five-day competition in which four teams—each made up of clinical, experimental, and theoretical members—are charged with solving a cancer ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH