Opinion: GMOs Are Not “Frankenfoods”

It behooves the scientific community to reflect on the public’s “Franken-” characterization of genetically modified foods.

Written byDov Greenbaum and Mark Gerstein
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, CHRIS DRUMMTwo centuries ago, during the dreary and bleak Mount Tambora volcanic winter of 1816, Mary Shelly began writing what would become her magnum opus, Frankenstein. No other work of fiction can claim to have such a lasting impact in articulating the public’s visceral fears of scientific and technological innovation. Indeed, the pejorative prefix Franken- has taken on a life of its own, attaching itself to many instances where innovation has outpaced our comfort zone, most prominently in the area genetically modified organisms (GMO)—also known as “Frankenfoods.”

More often than not, however, this anti-GMO characterization does not echo scientific reality. GMO foodstuffs have been around for decades and are grown in both developed and developing countries around the world by millions of farmers on millions of acres of arable land. A number of genetically modified crops are currently commercially farmed in the U.S., including alfalfa, canola, corn, cotton, papaya, squash, and sugar beets. Typically these modified crops are engineered to have added benefits such as resistance and tolerance to many environmental stresses—herbicides, insects, drought, salinity, and lack of soil nutrients—or added enzymes or increased yields and nutrients. Many of these benefits provide solutions to real and urgent problems in our food supply, and the National Academies of Science have repeatedly found that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH