Opinion: Super Storm Sandy

What role did climate change play in this week’s massive hurricane?

Written byKevin Trenberth
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Satellite image of Hurrican SandyNOAA-NASA GOES ProjectSandy started as an ordinary hurricane, feeding on the warm surface waters of the Atlantic Ocean for fuel. The warm moist air spirals into the storm, and as moisture rains out, it provides the heat needed to drive the storm clouds. By the time Sandy made landfall on Monday evening, it had become an extratropical cyclone with some tropical storm characteristics: a lot of active thunderstorms but no eye. This transformation came about as a winter storm that had dumped snow in Colorado late last week merged with Sandy to form a hybrid storm that was also able to feed on the mid-latitude temperature contrasts. The resulting storm—double the size of a normal hurricane—spread hurricane force winds over a huge area of the United States as it made landfall. Meanwhile an extensive easterly wind fetch had already resulted in piled up sea waters along the Atlantic coast. This, in addition to the high tide, a favorable moon phase, and exceedingly low pressure, brought a record-setting storm surge that reached over 13 feet in lower Manhattan and coastal New Jersey. This perfect combination led to coastal erosion, massive flooding, and extensive wind damage that caused billions in dollars of damage.

In many ways, Sandy resulted from the chance alignment of several factors associated with the weather. A human influence was also present, however. Storms typically reach out and grab available moisture from a region 3 to 5 times the rainfall radius of the storm itself, allowing it to make such prodigious amounts of rain. The sea surface temperatures just before the storm were some 5°F above the 30-year average, or “normal,” for this time of year over a 500 mile swath off the coastline from the Carolinas to Canada, and 1°F of this is very likely a direct result of global warming. With every degree F rise in temperatures, the atmosphere can hold 4 percent more moisture. Thus, Sandy was able to pull in more ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas