Opinion: Why Most TBI Studies Fail

Thoughts on how to redesign clinical trials for traumatic brain injury

Written byDonald Stein
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, JAMES HEILMANWhen doctors are testing new drugs or treatments for diseases, randomized controlled clinical trials are considered the gold standard. But in my field of traumatic brain injury (TBI), this gold standard approach is not working. Over the last three decades, dozens of Phase 3 clinical trials evaluating TBI treatments have failed to provide solid evidence of patient benefit.

When a therapy reaches Phase 3 clinical trials, it has already been tested in animals and in early-stage human studies. Each and every TBI drug that has reached late-stage clinical trials has failed. This 100 percent failure rate represents a huge human and economic cost. Why is this happening?

It is possible that the drugs tested just don’t work. Alternatively, some treatments may have been helping patients, but they were tested in a format where the benefit was not discernible above statistical noise.

I believe clinical trials for TBI and other neurological disorders should be designed and conducted differently. My perspective is informed by watching progesterone therapy for TBI, an approach I have studied in animals for many years, progress into the clinical realm. But ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies