Optical Genome Mapping Works Well in Detecting Cancer Risk

The relatively new technique for visually detecting chromosomal variants associated with disease risk performs at least as well as more established techniques in two recent studies.

marcus a. banks
| 3 min read
streaks of blue and green from a fluorescent chromosome mapping technique

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: Fluorescently labeled DNA used to create an optical genome map
COURTESY OF BIONANO GENOMICS

Genome maps provide an overall view of major variations in a person’s chromosomes, such as big insertions or deletions or the 180-degree flipping of sequences. Some of these structural variants are associated with genetic predispositions to diseases. For instance, many blood cancers are linked to chromosomal rearrangements in which parts of a chromosome break and then attach to another chromosome.

Maps of those rearrangements and other structural variations in chromosomes are currently derived from a multitude of tests, but according to the authors of a pair of studies published online July 7 in the American Journal of Human Genetics, only one is needed: a method known as optical genome mapping. This technique uses fluorescence microscopy to visualize the structure of DNA molecules, which in aggregate provides an overall map of a genome’s structure. In their studies, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • marcus a. banks

    Marcus A. Banks

    Marcus is a science and health journalist based in New York City. He graduated from the Science Health and Environmental Reporting Program at New York University in 2019, and earned a master’s in Library and Information Science from Dominican University in 2002. He’s written for Slate, Undark, Spectrum, and Cancer Today.

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit