Optical Genome Mapping Works Well in Detecting Cancer Risk

The relatively new technique for visually detecting chromosomal variants associated with disease risk performs at least as well as more established techniques in two recent studies.

Written byMarcus A. Banks
| 3 min read
streaks of blue and green from a fluorescent chromosome mapping technique

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: Fluorescently labeled DNA used to create an optical genome map
COURTESY OF BIONANO GENOMICS

Genome maps provide an overall view of major variations in a person’s chromosomes, such as big insertions or deletions or the 180-degree flipping of sequences. Some of these structural variants are associated with genetic predispositions to diseases. For instance, many blood cancers are linked to chromosomal rearrangements in which parts of a chromosome break and then attach to another chromosome.

Maps of those rearrangements and other structural variations in chromosomes are currently derived from a multitude of tests, but according to the authors of a pair of studies published online July 7 in the American Journal of Human Genetics, only one is needed: a method known as optical genome mapping. This technique uses fluorescence microscopy to visualize the structure of DNA molecules, which in aggregate provides an overall map of a genome’s structure. In their studies, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • marcus a. banks

    Marcus is a science and health journalist based in New York City. He graduated from the Science Health and Environmental Reporting Program at New York University in 2019, and earned a master’s in Library and Information Science from Dominican University in 2002. He’s written for Slate, Undark, Spectrum, and Cancer Today.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform