Optogenetics and OCD

Stimulating brain cells with light reveals the dysfunctional circuitry that causes obsessive-compulsive disorder.

ruth williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

WIKIMEDIA, LARS KLINTWALL MALMQVISTThe abnormal brain activity seen in patients with obsessive-compulsive disorder (OCD) is a likely cause of the condition, according to two papers published today (June 6) in Science. Both studies used optogenetic techniques, which allow specific brain cells to be turned on and off at the flick of a light switch, to link the abnormal brain activity to OCD behavior in mice.

“It’s outstanding neuroscience in that the tandem of studies complement one another beautifully, but also in that they leverage state-of-the-art technology,” said Scott Rauch, a professor of psychiatry at McLean Hospital, in Belmont Massachusetts, who was not involved in the studies. “Both papers are exceptional.”

“These two papers have confirmed the causal relationship between [neural] circuit abnormalities and [OCD-like] behavior,” said Chris Pittenger, a professor of psychiatry at Yale University in New Haven, Connecticut, who was also not involved in the research. “And that’s of substantial value.”

OCD is a debilitating condition characterized by intrusive thoughts that cause anxiety as well as compulsive repetitive behaviors. “I’m a psychiatrist as well as a researcher and I primarily treat OCD patients,” said Susanne Ahmari, a professor of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo