Oral History

Researchers use DNA from ancient tooth tartar to chart changes in the bacterial communities that have lived in human mouths for 8,000 years.

Written byDan Cossins
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

GENETIC ARCHAEOLOGY: A matchbox-size chunk of dental tartar cut from this 1,000-year-old jaw inspired the study of differences in the oral bacterial communities of early and modern humans.COURTESY OF ALAN COOPERThe idea took root with the offer of an unusual gift—a hefty chunk of ancient dental tartar. In 1996, while a postdoc at the University of Oxford, biological anthropologist Alan Cooper visited archaeologist Keith Dobney at York University. They had already discussed several ideas, including how they might use ancient tartar—otherwise known as dental calculus—when Dobney pulled from his desk drawer a matchbox-size brownish-grey block of the stuff, taken from a 1,000-year-old skeleton. “I was amazed,” recalls Cooper.

Dobney, now at the University of Aberdeen in Scotland, had been using scanning electron microscopy to examine the calculus for traces of food when he noticed an abundance of fossilized bacteria. He suggested it might also be a source of extractable bacterial DNA—a prize that could offer a glimpse into the evolution of the human microbiota and of human disease. Cooper was keen to try, but knew that even the most sterile lab consumables—from plasticware to enzymes—contained traces of bacterial DNA, so he was never confident that his early results were free from contamination.

Almost 2 decades later, armed with ultrasterile consumables and an ultraclean lab at the University of Adelaide’s Australian Centre for Ancient DNA—where he is now director—Cooper and his colleagues have used ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies