Outsmarting HIV

Small molecules that mimic the T-cell surface receptor CD4 could expose the virus to antibody-based immune responses.

Written byJef Akst
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

HIV-infected T cellFLICKR, NIAIDThe T-cell surface receptor CD4 is necessary for HIV to enter host cells. Once the virus is inside, however, the CD4 receptor makes HIV vulnerable, by altering the conformation of the envelope glycoprotein in a way that exposes it to effective antibodies. To evade this immune response, HIV-1, the most common serotype of the virus, downregulates CD4. To make the virus susceptible to antibody-based destruction once again, researchers decided to present infected cells with small molecule mimics of CD4, forcing HIV’s envelope glycoprotein back into a vulnerable state. Their results were published today (May 4) in PNAS.

“The virus has to get rid of the CD4 proteins to protect itself,” study coauthor Jonathan Richard, a postdoctoral researcher at the University of Montreal’s CHUM Research Centre, said in a press release. “Adding the small molecule forces the viral envelop to open, like a flower. The antibodies that are naturally present after the infection can then target the infected cells so they are killed by the immune system.”

The results could be key to an effective treatment, added study coauthor Andrés Finzi, also of the CHUM Research Centre. “We found that people infected with the HIV-1 virus have naturally occurring antibodies that have the potential to kill the infected cells. We just have to give them a little push by adding a tiny molecule ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research