Oxytocin for Autism?

Scientists find that the hormone improves sociability in a mouse model of autism.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

V. ALTOUNIAN/SCIENCE TRANSLATIONAL MEDICINEMutant mice that exhibit many of the characteristics of human autism spectrum disorders, including social deficiency, have more interactions with fellow mice when given a dose of oxytocin, according to a report published today (January 21) in Science Translational Medicine. The beneficial effect was also apparent when the mice’s own oxytocin production was increased—which may be important for translating such a treatment to humans.

“It’s very exciting. They created a mouse model of autism . . . that had social deficits, and they found that if they gave oxytocin, it would rescue those social deficits,” said Larry Young who studies social neuroscience at Emory University and was not involved in the work.

The model mouse lacks a functional gene for contactin-associated protein-like 2 (Cntnp2). In humans, mutation of this gene causes cortical dysplasia and focal epilepsy (CDFE) syndrome; at least 70 percent of CDFE patients also display symptoms of autism spectrum disorders. Importantly, the characteristics of the mice—including their deficiencies in social behavior—are highly similar to those of humans with the CNTNP2 mutation.

Dan Geschwind’s team at the University of California Los Angeles Center for Autism Research and Treatment ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies