Pain Meds Fight Bacteria

Researchers show that some anti-inflammatory drugs may inhibit bacterial growth by blocking a protein component that is important in DNA replication.

Written byDaniel Cossins
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

An NSAID bound to a bacterial proteinAARON OAKLEYNon-steroidal anti-inflammatory drugs (NSAIDs) are a class of compounds designed to reduce pain, fever, and inflammation. A few studies have suggested they may also possess antibacterial properties. In a paper published today (March 13) in Chemistry & Biology, researchers from the University of Wollongong in Australia have demonstrated that three NSAIDs exert weak antibacterial activity, and presented evidence that they do so by blocking the DNA polymerase sliding clamp, which is crucial for bacterial DNA replication.

“This is an interesting paper showing good evidence for biochemical inhibition of the DNA polymerase sliding clamp by a few NSAIDs,” said Thomas Keating, a principal scientist at AstraZeneca Infection Innovative Medicines in Waltham, Massachusetts, in an e-mail to The Scientist. The causal link to the observed antibacterial effects is tenuous, he added, but the sliding clamp is “an interesting, novel antibacterial target.”

“The fact the molecules tested are NSAIDs is not of great importance, given that the activity is too weak to be useful,” added Keating. “The compounds are best viewed as leads that are quite a ways off from clinical candidacy.”

Richard Ebright, a molecular biologist at Rutgers University in New Jersey, is more critical. “I cannot be supportive about the prospect that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH