Pfizer Vaccine Induces Immune Structures Key to Lasting Immunity

In the armpit lymph nodes of people who had received the mRNA vaccine against SARS-CoV-2, researchers found germinal centers needed to generate long-lived antibody-making cells.

Written byKatarina Zimmer
| 6 min read
lymph node germinal center antibody covid-19 sars-cov-2 pandemic coronavirus plasmablast b cell pfizer vaccine immunity

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

ABOVE: A lymph node with B cells labeled yellow and CD4+ T cells in blue.
FLICKR, NIAID

Just like any skilled workers, many antibody-producing cells require training to do their job proficiently. That education happens in germinal centers, structures in the lymph nodes that form upon infection or vaccination, then disappear after a few weeks. Although our bodies have some antibody-spewing plasmablasts at the ready when they first encounter a new virus, better, longer-lasting antibody-making cells emerge from these lymphoid boot camps.

In what’s described as the dark zone of the germinal center based on its appearance under a microscope, B cells swiftly multiply and diversify into clones that carry differently shaped antibodies. They then drift into the “light zone,” where they face examination by specialized T cells that test their ability to recognize viral protein. This test is tough; imperfect clones are sent back to the dark zone for refinement ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • katya katarina zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field of science and wanted to write about all of them. Following an internship with The Scientist in 2017, she’s been happily freelancing for a number of publications, covering everything from climate change to oncology. Katarina is a news correspondent for The Scientist and contributes occasional features to the magazine. Find her on Twitter @katarinazimmer and read her work on her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform