Ploidy predicts lifestyle

Study explores how host-parasite interactions select for genome number

Written byCathy Holding
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Parasites are more likely to be haploid, while host organisms are more likely to be diploid, according to results of a study in PNAS this week that seeks to explain the variety of ploidy found among eukaryotes.

Scott L. Nuismer and Sarah P. Otto, at the Universities of Idaho and British Columbia, respectively, integrated host–parasite coevolution into existing models of lifecycle evolution in order to generate testable predictions about whether a particular eukaryote should be haploid or diploid. Preexisting models focused only on the effects of mutation on an organism, but could otherwise make no predictions on levels of ploidy, according to the authors.

"It makes perfect sense in hindsight," Otto told The Scientist. Host–parasite interaction is selecting for a host that can recognize as many pathogens as possible, making it better able to clear itself of infection. On the other hand, in many types of interaction, a parasite is ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH