Plug-n-play in Staph adaptation

Mobile antibiotic resistance elements hold implications for spread of MRSA

Written byCathy Holding
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

By comparing Staphylococcus aureus strains, British researchers this week highlighted the important role played by easily exchanged, mobile genetic elements in the organism's global success and in the havoc they sometimes wreak in hospitals.

Matthew Holden, at the Wellcome Trust Sanger Institute in Cambridge, and colleagues compared two pathogenic S. aureus strains: a recent hospital-acquired representative of the epidemic methicillin-resistant S. aureus EMRSA-16 clone (MRSA252), and an isolate of an invasive community-acquired methicillin-susceptible S. aureus clone (MSSA476). The authors sequenced the isolates and compared them with published S. aureus genome sequences.

A pool of virulence and antibiotic resistance genes in the form of large mobile "accessory elements" is available for transfer between strains, Holden and colleagues report in the PNAS Early Online Edition.

No single strain has all these elements, but the ease of exchange is probably why the organism is so globally successful, according to Mark Enright, a coauthor ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH