Potential for wide-scale whole-genome sequencing in humans using nanopore approaches

Wellcome Trust Centre for Human Genetics and Genomics plc first to sequence multiple human genomes

Written byOxford University
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Oxford University’s Wellcome Trust Centre for Human Genetics (WTCHG) and the leading genome analytics company Genomics plc today announced the first sequencing and analysis of multiple human genomes using nanopore technology. The announcement, made on Thursday at the Oxford Nanopore Community Meeting in New York City, marks a major breakthrough in sequencing technology in opening up the potential of wide-scale whole-genome sequencing in humans using nanopore approaches.

Today’s announcement raises the possibility of a major change to both the economics and the science of DNA sequencing. Researchers at the WTCHG and Genomics plc used the MinION sequencer developed by Oxford Nanopore Technologies. The portable MinION is a hand-held device about the size of a Mars bar, and is powered by a laptop computer to which it connects via a USB port. It is available for $1,000 plus the cost of consumables. While nanopore sequencing has been available for two years, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo