Power law governs gene expression

Proportional dynamics illustrates commonality of gene expression levels in all organisms

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

With an ever-increasing number of genomes available for analysis, there has been a shift in emphasis away from the study of single genes and a greater attempt to understand gene expression at the network or systems level. A report in the March 1 PNAS shows that power laws—a universal mathematical dynamic—govern the process.

Hiroki Ueda and colleagues at the Center for Developmental Biology describe the mathematical principle underlying observed levels of gene expression. They used information from public databases of whole genome sequences and from their own microarray analyses. Proportional dynamics, also known as “rich-travel-more,” showed that power law levels of gene expression were observed not only in different organisms, but also within discrete organs or at specific developmental times in the same organism (PNAS, DOI:10.1073/pnas.0306244101, March 1, 2004).

The team examined how genes change their expression in different conditions and observed that highly expressed genes change more, while genes ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Cathy Holding

    This person does not yet have a bio.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit