Predicting Worm Lifespan

Scientists engineer fluorescing nematodes to project the worms’ expected lifespans through flashes of light at just three days old.

Written byJef Akst
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

WIKIMEDIAResearchers have devised a way to predict the lifespan of C. elegans, according to a study published this week (February 12) in Nature. By outfitting the worms with proteins that fluoresce in response to free radicals in the mitochondria, then observing the number of “mitoflashes” in three-day-old worms, Meng-Qiu Dong of the National Institute of Biological Sciences in Beijing, China, and her colleagues could tell whether the animals would live longer or shorter than their average 21-day lifespan.

Fewer mitoflashes—indicating lower levels of free radicals, which result from cell metabolism and can damage DNA and proteins—were predictive of a longer lifespan; high mitoflash activity meant the worm was likely to die before 21 days.

“The finding that mitoflash frequency in early adulthood predicts lifespan corresponds well with our earlier observations that some early-life events and conditions could be good longevity predictors,” Leonid Gavrilov of the University of Chicago, who researches human aging , told New Scientist.

Dong’s team tested the technique on a C. elegans model with an extended lifespan of 39 days and found that, as expected, the longer-lived worms exhibited fewer mitoflashes at three-days old, with free radical levels peaking later in life. And worms harboring mutations that shortened lifespan showed ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research