Protein Zippers

Matching up positive and negative charges on two of its subunits may allow the TatA membrane transporter to penetrate the lipid bilayer.

Written byJef Akst
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

CHARGED LINKS: Transmembrane pore assembly may rely on subunits that fold via “charge zippers” made of salt bridges (red and blue side chains).COURTESY OF STEPHAN GRAGE AND ANNE S. ULRICH

The paper T.H. Walther et al., “Folding and self-assembly of the TatA translocation pore based on a charge zipper mechanism,” Cell, 152:316-26, 2013. The finding TatA proteins are believed to come together to form large pores in bacterial membranes to transport folded proteins. But two of the protein’s segments are covered in positive and negative charges, which would make it difficult for them to penetrate the lipid bilayer—a process believed to be necessary for protein transport. Now, Anne Ulrich of the Karlsruhe Institute of Technology in Germany and colleagues report that corresponding charges on the two cytoplasmic segments of TatA align, effectively neutralizing each other, and allowing the formation of a membrane-crossing pore. The peculiar pattern The researchers noticed that the pattern of charged amino ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Add The Scientist as a preferred source on Google

Add The Scientist as a preferred Google source to see more of our trusted coverage.

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Graphic of amino acid chains folded into proteins

Expi293™ PRO Expression System: Higher Yields Across a Wider Variety of Proteins

Thermo Fisher Logo