Proteins by Design

New functional proteins are being built on advances in modeling and structure prediction.

Written byDavid Baker
| 9 min read
Blue ribbon-like structure indicating a protein.
Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Imagine having the power to create a brand new protein—a biosensor for any small molecule, say, or a novel enzyme—on demand. It's not pure fantasy. Computational structural biology is poised to put this power into our hands.

Along with a team of research groups around the world, we have begun designing novel proteins and folds from scratch, computing amino acid sequences that will fold to create enzymatic activities never before seen in nature. The possibilities are limited only by our imaginations: Picture an endonuclease designed to thwart malaria, molecular sensors for bioterror agents, or a vaccine that HIV is less likely to evolve around.

The mechanics of these engineering feats are closely related, perhaps not surprisingly, to their logical inverse: structure prediction. Scientists have for years tried to develop methods for predicting a protein's structure simply from its amino acid sequence. Imagine that in the time it takes to sequence ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH