Radiation Therapy Damages Neurons

Cranial irradiation, a common brain cancer treatment, disrupts neural morphology in mice in ways that resemble damage caused by neurodegenerative conditions.

Written byChris Palmer
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, RAMACranial radiation therapy, or radiation targeted to the brain, has been an effective means of decreasing the size of brain tumors. However, the treatment is known to cause neurological dysfunction later in life, though the exact mechanisms underlying the damage have not been clear. Research published Monday (July 15) in the Proceedings of the National Academy of Sciences, demonstrates that the life-saving therapy compromises the structure of neurons in mice.

Vipan Parihar and Charles Limoli, oncologists at the University of California, Irvine, observed a significant reduction in the complexity of dendrites—the branch-like structures on neurons that receive input from other neurons—following treatment with a low dose of radiation—equivalent to a dose used for children—or a dose 10 times higher. Dendritic branching, as well as dendritic length and area, were reduced by more than 50 percent for both doses.

The radiation therapy resulted in a 20 to 35 percent reduction in the number of neurons in the hippocampus and a 40 to 70 percent reduction in the density of dendritic spines—knob-like structures that make synaptic connections with axons of other neurons. Immature dendritic proto-spines were reduced in number 40 percent 10 days after the high dose. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH