To say that polymerase chain reaction (PCR) has revolutionized the biological sciences is not an understatement. First developed in the early 1980s, the technique allows scientists to amplify DNA targets for detection, quantification, and study. PCR works by first using heat to denature double-stranded DNA into single-stranded template strands. Temperatures are then lowered to allow DNA polymerases to assemble new DNA strands, starting at specific points marked by oligonucleotide primer annealing. Repeated thermal cycling can therefore initiate a chain reaction that exponentially amplifies the original DNA template.
DNA polymerase properties and characteristics play a large role in the success of PCR. Although the Taq polymerase, first identified in the bacterium Thermus aquaticus, is arguably the best known DNA polymerase used for PCR, it is by no means the only option. Recent years have seen the discovery and development of DNA polymerases such as KOD that work faster and with more ...