Ready, Set, Grow

How to culture stem cells without depending on mouse feeder cells

Written byAmber Dance
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

© BRYAN SATALINO

Stem cells require just the right sort of coddling to stay in their pure pluripotent, dividing state. In the lab, the nanny role is often taken on by mouse embryonic fibroblasts (MEFs), lining the culture dish as a “feeder layer.” However, these feeders have their downsides, so scientists are developing other options.

Exactly what makes MEFs or other feeder lines good nannies is a bit uncertain. They seem to offer stem cells two main supports: one is a cozy surface to lie down on, with other cells to contact and the extracellular matrix (ECM) the fibroblast feeders produce; the second consists of growth factors and other molecules secreted by the feeders into the cell-culture medium.

However, feeders also create complications, forcing scientists to culture not ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

September 2017

Healing with Hallucinogens

The therapeutic benefits of psychedelic drugs

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery