Recreating Fish Migration Written Through Environmental Genomics

Scientists examine floating traces of DNA left by fish to better understand New York’s aquatic life.

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

eDNA FISHERMEN: Sam Chin (left) and Nathan Morris (center), PhD students in Elizabeth Alter’s lab, collecting water samples for eDNA analysis with Mark Stoeckle (right) at the New York AquariumJESSE AUSUBEL

When investigating the different forms of marine life inhabiting New York City’s various bodies of water, Mark Stoeckle, a biologist at Rockefeller University, says “a bucket, like what you would use when you’re painting your house,” along with a rope and a few empty bottles will do the trick. Using these simple tools, he and his team collected water samples from the lower Hudson and East Rivers to obtain traces of DNA that had been sloughed off by various fish species.

“We threw the bucket in the water, hauled it up, [and] poured the samples into some rinsed-out juice bottles,” says Stoeckle. They then took those water-filled containers back to the lab and analyzed the DNA.

Bits of free-floating DNA shed by fish and other ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Aggie Mika

    This person does not yet have a bio.

Published In

July/August 2017

DNA Erector Sets

New blueprints for the double helix

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development

An illustration of different-shaped bacteria.

Leveraging PCR for Rapid Sterility Testing