Repeated Regeneration

A 16-year-long newt study finds that regeneration remains efficient with repetition and age.

Written byMegan Scudellari
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Cynops pyrrhogasterWIKIMEDIA COMMONS, DOBROMILA

Adult newts retained the complete and robust ability to regenerate their eye lenses 18 times over a 16-year period, according to a study published today (July 12) in Nature Communications.

The finding counters the belief that regeneration becomes less efficient with time or repetition. It also gives hope to regenerative medicine that age may not affect regeneration ability.

“It’s very surprising that the lenses the newts regenerate look really very similar to the [original] lens,” said Brigitte Galliot, who studies hydra regeneration at the University of Geneva in Switzerland and was not involved in the research. “It’s unusual to have a study over 16 years,” she added. “It’s beautiful material.”

Regeneration studies conducted in the 1700s and 1800s noted that repeated limb amputation and regeneration ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH