Replacement Secretory Glands

Researchers have engineered functional, lab-grown precursors to salivary and tear glands, successfully connecting them to ducts and nerves in mice.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Bioengineered salivary gland (green, GFP-epithelial cells and TRITC-gelatin-injected)TSUJI ET AL.A team led by investigators at the Tokyo University of Science (TUS) has created precursors to salivary and lacrimal glands that, when transplanted into mice, successfully connected to the host ducts and nervous system. Once connected, these lab-grown secretory glands helped to restore the production of saliva and tears in animals from which healthy salivary or lacrimal glands had previously been excised. TUS’s Takashi Tsuji and colleagues reported their results in two papers published today (October 1) in Nature Communications.

“People have done a lot of work with stem cells, but this is the first time I’ve seen transplantation of a whole [bioengineered] salivary gland,” said the University of Buffalo’s Olga Baker, an assistant professor of oral biology, who was not involved in the work. “To my knowledge, this is a first.”

Dysfunction of the salivary and tear glands are associated with a variety of diseases, and can cause additional complications. Patients with an autoimmune disease called Sjogren’s syndrome, for example, typically experience both dry eyes and mouth. If researchers were able to engineer working replacement glands for humans, they could restore at least some of the lost function in people with this and other diseases.

To create the secretory glands, Tsuji and his colleagues ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Tracy Vence

    This person does not yet have a bio.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit