Researchers Build a Cancer Immunotherapy Without Immune Cells

A team has engineered two stem cell lines into “synthetic T cells” that destroy breast cancer cells in vitro.

Written byAbby Olena, PhD
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Conceptual illustration of a designer cell sensing a target cellRYO TACHIBANA, GRADUATE SCHOOL OF PHARMACEUTICAL SCIENCES, THE UNIVERSITY OF TOKYOEngineering an immune cell to recognize and kill a cancer cell is the key to chimeric antigen receptor (CAR) T-cell therapy, but modified immune cells also have the potential to cause problems for patients. One such complication, cytokine release syndrome, is an overreaction of the immune system that can cause symptoms as mild as a fever and as serious as organ dysfunction and death. In a study published today (November 13) in Nature Chemical Biology, researchers have generated nonimmune cells with the ability to kill cancer cells on contact.

“We’re entering a new era of cell-based therapies, and this is the first to extend the scope beyond lymphocytes per se,” Simon Davis, a biologist at the University of Oxford in the U.K. who was not involved in the study, writes in an email to The Scientist. “The authors show that they can turn a passive, nonimmune cell into a contact-dependent killer of breast cancer cells,” he adds.

I liken this to an explosion, which could eventually kill the synthetic T cell, along with a couple of other cells around, mostly cancer cells.—Martin Fussenegger,
ETH Zurich

Typical immunotherapies work by harnessing the power of the immune system. In CAR T-cell therapy, for example, patients receive a transfusion of their own T cells that have been ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research