Researchers Discover Salt-Loving Methanogens

Two previously overlooked archaeal strains fill an evolutionary gap for microbes.

abby olena
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A hypersaline salt lake in southeastern Siberia with halite crystal deposition; the red color is due to a high density of haloarchaea in the brines.DIMITRY SOROKINMany strains of archaea are capable of living in environments with high salt concentrations, and others are able to produce methane, but only a few can do both. In a study published today (May 26) in Nature Microbiology, researchers identified and cultured two lineages of methane-generating archaea that thrive in salty lakes. The two strains—part of a class the authors named “Methanonatronarchaeia”—appear to be most closely related to the Halobacteria, a class of archaea found in salt-rich environments worldwide.

“The halophilic archaea had long been suspected to have evolved from a lineage of methanogens, and this new lineage is the missing link confirming this hypothesis,” William Whitman, a microbiologist at the University of Georgia who did not participate in the study, wrote in an email to The Scientist. “This work is of great value and an important development.”

Dimitry Sorokin, a microbial ecologist at the Russian Academy of Sciences in Moscow, and his colleagues showed previously that the sediment in soda lakes in southern Siberia contained DNA with two different versions of a gene unique to methanogens, but that were only distantly related to the same gene in known microbes. In order to find the organisms the genes belonged to, the researchers isolated 11 ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer