Researchers Focus on Histone Code

Histones, the proteins around which DNA coils to form chromatin, are moving toward the forefront of epigenetic research (see also, "The Meaning of Epigenetics"). A recently floated hypothesis states that the highly modifiable amino termini, or tails, of these proteins could carry their own combinatorial codes or signatures to help control phenotype, and that parts of this code may be heritable. Histones are perhaps more intimately linked with DNA than any other protein. Transcriptional regulati

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Histones are perhaps more intimately linked with DNA than any other protein. Transcriptional regulation, recombination, repair, and replication--basically anything that happens to the DNA--must happen within the context of its packaging. That alone lends importance to the field. Leukemia therapeutics based on inhibition of histone modifiers have already made it to the clinic.1 And in light of this new "histone code" hypothesis, researchers are quick to tout further possibilities in human development, fertility, and other types of cancer. Shelley L. Berger, associate professor of molecular genetics at the Wistar Institute, University of Pennsylvania, says, "I think it's going to be really critical in human biology. It's not just some dry academic pursuit."

Though first voiced in 1993 by Bryan Turner, professor of experimental genetics, University of Birmingham Medical School, Birmingham, U.K.,2 the histone code hypothesis was formally named last year by C. David Allis, Byrd professor of biochemistry and molecular ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Brendan Maher

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours