Researchers Identify Obesity-Diabetes Link

Exosomes produced by macrophages in fatty tissue influence insulin sensitivity in distant cell types, a study finds.

Written byCatherine Offord
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

SIGNALLING INSTRUCTIONS: Obesity promotes insulin resistance via exosomal microRNAs, according to researchers at the University of California, San Diego. Macrophages associated with adipocytes in mouse fatty tissue package microRNAs into exosomes, which are released into circulation and are taken up by other cell types. When researchers treated lean mice with exosomes made by macrophages from obese mice, they found that despite remaining lean, recipient mice became insulin resistant. In contrast, treating obese mice with exosomes from lean mice improved the recipient animals’ insulin sensitivity, without reducing their weight.© LAURIE O'KEEFE

The paper
W. Ying et al., “Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity,” Cell, 171:372-84.e12, 2017.

Jerrold Olefsky has spent much of the last decade trying to decipher the connection between obesity and the risk for type 2 diabetes. It’s now known that “in obesity, the adipose tissue becomes highly inflamed and fills up with macrophages and other immune cells,” Olefsky, an endocrinologist at the University of California, San Diego, explains. “This inflammation is very important for causing insulin resistance,” in which cells fail to respond to hormonal signals to take up glucose.

But a crucial piece of the puzzle has been missing. “Insulin resistance is a systemic thing,” Olefsky says. For inflamed fat tissue to trigger it, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

December 2017

The Embryo's Secrets Revealed

Genomic reprogramming in early development

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH