The last decade has heralded the spatial single cell -omics era. Using new techniques, researchers build comprehensive cellular and molecular maps by detecting numerous transcripts and proteins at single cell resolution and in three-dimensional space. Many spatial single cell -omic techniques focus on mRNA profiling within a tissue space.1 While transcriptomic analysis distinguishes cell subtypes and identifies cell states, researchers must corroborate these results with protein analyses to recognize unique molecular signatures present in individual cells. Exploiting such spatial proteomic datasets allows scientists to classify cells, identify novel cell types and genes, trace cell lineages, and uncover causative disease pathways.
Researchers typically want to profile as many protein markers in a sample at once to obtain a better picture of tissue organization and function. One way to visualize protein expression in subcellular compartments is with fluorescent immunohistochemistry (IHC), a powerful approach for characterizing biologically-relevant cellular phenotypes. Traditional fluorescent IHC is ...