Saving Failing Hearts

Inhibiting a small regulatory RNA appears to improve cardiac function in mice with surgically induced heart problems.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

WIKIMEDIA, RAMADuring chronic heart failure, the muscles of the vital organ slowly lose their ability to contract. Blocking the action of microRNA-25 (miR-25)—a noncoding RNA molecule that regulates gene expression—helps restore contractility to cardiac muscles in a mouse model of chronic heart failure, according to a paper published today (March 12) in Nature. The researchers hypothesize that miR-25 exacerbates heart failure by binding and preventing translation of the mRNA that encodes the calcium pump SERCA2a, a protein that is key to heart muscle contraction. The flow of calcium in and out of the cytosol of heart muscle cells helps regulate the rhythmic muscle contractions that cause the heart to beat.

Study coauthor Mark Mercola, a cardiology researcher at the Sanford-Burnham Medical Research Institute in La Jolla, California, said there is reason to hope the path to the clinic will be smooth for the RNA-based therapeutic approach his team presents. A Phase 2 clinical trial has already demonstrated that boosting SERCA2a in human hearts via gene therapy can slow progression of chronic heart failure. “From a pharmaceutical standpoint, we have a clinically validated target,” Mercola said.

“These experiments are very interesting and exciting,” Stefanie Dimmeler, director of the Institute of Cardiovascular Regeneration at Goethe University Frankfurt in Germany, wrote in an e-mail to The Scientist. Dimmeler was not involved in the study. “SERCA2a is a very important target for treating heart failure and its augmentation by ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Kate Yandell

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours