Saving Failing Hearts

Inhibiting a small regulatory RNA appears to improve cardiac function in mice with surgically induced heart problems.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

WIKIMEDIA, RAMADuring chronic heart failure, the muscles of the vital organ slowly lose their ability to contract. Blocking the action of microRNA-25 (miR-25)—a noncoding RNA molecule that regulates gene expression—helps restore contractility to cardiac muscles in a mouse model of chronic heart failure, according to a paper published today (March 12) in Nature. The researchers hypothesize that miR-25 exacerbates heart failure by binding and preventing translation of the mRNA that encodes the calcium pump SERCA2a, a protein that is key to heart muscle contraction. The flow of calcium in and out of the cytosol of heart muscle cells helps regulate the rhythmic muscle contractions that cause the heart to beat.

Study coauthor Mark Mercola, a cardiology researcher at the Sanford-Burnham Medical Research Institute in La Jolla, California, said there is reason to hope the path to the clinic will be smooth for the RNA-based therapeutic approach his team presents. A Phase 2 clinical trial has already demonstrated that boosting SERCA2a in human hearts via gene therapy can slow progression of chronic heart failure. “From a pharmaceutical standpoint, we have a clinically validated target,” Mercola said.

“These experiments are very interesting and exciting,” Stefanie Dimmeler, director of the Institute of Cardiovascular Regeneration at Goethe University Frankfurt in Germany, wrote in an e-mail to The Scientist. Dimmeler was not involved in the study. “SERCA2a is a very important target for treating heart failure and its augmentation by ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Kate Yandell

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio