Saving Reefs One Polyp at a Time

Researchers have discovered how to study coral organisms in unprecedented detail by mounting them in specially designed microscope slides.

Written byCatherine Offord
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

CORAL HUG: Two polyps of the reef-building coral Pocillopora damicornis imaged with fluorescence microscopy, showing the coral’s GFP, the chlorophyll of its symbiotic algae (red) and cilia-driven motion of microscopic particles (blue)ORR SHAPIRO AND ASSAF VARDI, WEIZMANN INSTITUTE OF SCIENCE

Crucial habitats in underwater ecosystems, and harbingers of the damage inflicted by global warming on the world’s oceans, coral reefs epitomize the beauty—and the fragility—of marine life. But they’re also notoriously difficult to study.

“There are all these fascinating, basic biology questions that we don’t know the answer to,” says Virginia Weis, a marine physiologist at Oregon State University. How do corals respond mechanistically to bacterial infections, for example? What exactly happens during coral bleaching? “They’re hard questions to study, because we haven’t had the cell biology and imaging capabilities.”

Getting to the bottom of these questions is becoming increasingly urgent. Reports of the worst coral bleaching ever seen have peppered scientific journals this year; Justin Marshall of the University of Queensland told The New ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

June 2016

Found in Translation

Some supposedly nonfunctional RNA molecules encode functional peptides

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform