Scientists Identify More-Precise Neural Correlates of Dreaming

By examining brainwave patterns in a posterior cortical area, scientists can predict when people are dreaming.

Written byAshley P. Taylor
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

“The Dream,” Pablo Picasso, 1932FLICKR, NICHODESIGNNeuroscientists have long associated rapid eye movement (REM) sleep—the sleep stage that occurs before waking—with dreaming, and non-REM sleep with dreamlessness. These generalizations are not fully accurate, however; study participants often report having dreamt during non-REM sleep and, occasionally, the absence of dreams during REM sleep. In a study published today (April 10) in Nature Neuroscience, researchers at the University of Wisconsin–Madison and their colleagues have reported changes in the brainwave activity of one area of the brain, which they call the “posterior hot zone,” which are correlated with dreaming during both REM and non-REM sleep.

“This study looks at whether you can detect the occurrence of dreaming by analysis of high-density EEG recordings and even whether you can tell something about the categories of dream content, and it argues that they can do both of those,” Robert Stickgold, director of the Center for Sleep and Cognition at Beth Israel Deaconess Medical Center in Boston, who was not involved in the work, told The Scientist.

Researchers are keen to understand dreaming in part because they believe it may help them understand consciousness. It’s an old scientific idea: to study the areas involved in a given process, find a model in which that process is disrupted. During sleep, we are sometimes conscious—such as during dreams—and at other times, not, making it an ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH