Sea Change

A normally land-based microbiologist sets sail to find the building blocks of novel antibiotics in marine bacteria.

Written byChris Tachibana
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

RETURN TO PORT: On April 25, 2007 the Galathea 3 expedition arrived at Langeliniekaj Terminal in Copenhagen with Crown Prince Frederik onboard.THOMAS BREDOL/WWW.BREDOL.DK/PHOTOIn 2006 and 2007, systems biologist Lone Gram sailed the seven seas—returning with a boatload of bacteria. Gram, a professor at the Technical University of Denmark (DTU), was a member of Galathea 3, a round-the-world research expedition that used a rebuilt Danish naval vessel as its mother ship. Her team took microbial samples from “anything that was brought on board—seaweed, sediment, deepwater sponges, Arctic ice fish . . .”

Gram and colleagues were on the hunt for new drugs—mainly antibiotic and antivirulence compounds. Most of our current antibacterial medicines are derivatives of compounds from microbes such as the mold Penicillium and Actinobacteria. However, our current arsenal of antibiotics is losing its usefulness, thanks to an upsurge in the number of resistant strains. Every year in Europe alone, antibiotic-resistant bacteria kill an estimated 25,000 people.

Drug development is experiencing a sea change, looking to the ocean for potential medicines.

To find new antibiotics, researchers have explored libraries of synthetic chemicals and compounds from land-based microorganisms. But drug development is experiencing a sea change, looking to the ocean for potential medicines. “Seawater has a million microbes per milliliter, with even more potential for diversity in sediment ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series