Sea Change

A normally land-based microbiologist sets sail to find the building blocks of novel antibiotics in marine bacteria.

Written byChris Tachibana
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

RETURN TO PORT: On April 25, 2007 the Galathea 3 expedition arrived at Langeliniekaj Terminal in Copenhagen with Crown Prince Frederik onboard.THOMAS BREDOL/WWW.BREDOL.DK/PHOTOIn 2006 and 2007, systems biologist Lone Gram sailed the seven seas—returning with a boatload of bacteria. Gram, a professor at the Technical University of Denmark (DTU), was a member of Galathea 3, a round-the-world research expedition that used a rebuilt Danish naval vessel as its mother ship. Her team took microbial samples from “anything that was brought on board—seaweed, sediment, deepwater sponges, Arctic ice fish . . .”

Gram and colleagues were on the hunt for new drugs—mainly antibiotic and antivirulence compounds. Most of our current antibacterial medicines are derivatives of compounds from microbes such as the mold Penicillium and Actinobacteria. However, our current arsenal of antibiotics is losing its usefulness, thanks to an upsurge in the number of resistant strains. Every year in Europe alone, antibiotic-resistant bacteria kill an estimated 25,000 people.

Drug development is experiencing a sea change, looking to the ocean for potential medicines.

To find new antibiotics, researchers have explored libraries of synthetic chemicals and compounds from land-based microorganisms. But drug development is experiencing a sea change, looking to the ocean for potential medicines. “Seawater has a million microbes per milliliter, with even more potential for diversity in sediment ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH