Selfish Yeast Genes Encode Both Toxin and Antidote

By spreading a poison and hoarding the remedy, wtf4 improves its chances of being inherited.

Written byDiana Kwon
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Wtf4 antidote (pink) is gamete-specific and wtf4 poison (blue) acts on all sex cellsMMARÍA ANGÉLICA BRAVO NÚÑEZ AND NICOLE NUCKOLLS.

Scientists have discovered that wtf4, a gene from the yeast Schizosaccharomyces kambucha, boosts its odds of being passed down by encoding both a poison and an antidote, according to a study published today (June 20) in eLife.

In a 2014 study, Sarah Zanders, a geneticist at the Stowers Institute for Medical Research in Kansas City, and colleagues discovered that in two yeast species, S. pombe and S. kambucha, meiotic drivers—genes that boost their chances of survival by interfering with meiosis—could cause infertility.

Now, the team has uncovered one of the genes that are responsible for this effect—wtf4. This gene disrupts meiosis by generating two transcripts: one short RNA that encodes a toxic protein and one long RNA that encodes an antitoxin protein. The poison is ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo