Send in the Bots

Animal robots have become a unique tool for studying the behavior of their flesh-and-blood counterparts.

| 17 min read

Register for free to listen to this article
Listen with Speechify
0:00
17:00
Share

FOLLOW THE ROBOTS: More and more, researchers are turning to robots to answer questions in animal behavior. Here, young chickens following a robotic mother shed light on the process of imprinting.COURTESY OF JOSE HALLOY, FRANCESCO MONDADA EPFL GROUPAs a PhD student at the University of Toulouse in France, Simon Garnier was fascinated by the chemical signposts used by Argentine ants—an invasive species from the Mediterranean to California—to navigate their savanna environment. As the insects traverse complex terrain, they leave traces of pheromones that other ants will then follow, reinforcing the trailblazers’ path. “In nature, they will create these big networks of pheromone trails, sort of like the road system for us,” Garnier explains. And despite their wide-ranging and convoluted habitats, the ants always seem to construct highways that carve the shortest route back to the nest from a food source. Such navigational efficiency might suggest an advanced intelligence in these tiny-brained insects. The ants, which tend to take the path with the smallest angle of deviation at each fork in a complex maze, could be computing the angles at each bifurcation. But Garnier knew there might be a simpler answer: by just trying to head straight, the ants would have a greater chance of taking the less deviant path—no complex angle measurements required.

Like any hypothesis, his idea needed to be tested. But measuring brain activity in a moving ant—the most direct way to determine cognitive processing during animal decision making—was not possible. So Garnier didn’t study ants; he studied robots. Using a small fleet of dice-size machines, rolling on wheels powered by wristwatch motors, he and his colleagues tested the robots’ ability to navigate artificial networks, using whatever computational capability the researchers programmed. A camera detected the location of the robo-ants as they moved through an arena and relayed the information to a video projector, which shone a bit of blue light just behind a trail-laying bot. As more robots moved about, the more-frequented areas glowed brighter. The robots then navigated the environment by sensing light intensity ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.

Published In

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit