Sensors for All

A versatile modular strategy for detecting small molecules in eukaryotes

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

SENSOR SET-UP: To detect a small molecule of interest (the ligand), a conditionally stable ligand-binding domain (LBD) is fused to a reporter, such as green fluorescent protein (GFP). The complex degrades if the ligand is not present (1), and activates the reporter when it is (2). In another demonstration of this sensor, researchers connected the LBD to a DNA-binding domain (DBD) (3). When the ligand is present, the DBD hooks onto to a site in the genome (red), which results in the expression of a specified reporter gene (yellow) (4).© GEORGE RETSECK; ELIFE, 4:E10606, 2015

The ability to detect small molecules of interest has wide applicability in biological research, biotechnology, and especially synthetic biology. For example, turning cells into factories that produce small molecules—for use as drugs, biofuels, and more—is the goal of many synthetic biology endeavors. Just like regular factories, cellular ones require optimization. “In many cases we can create a valuable compound, but at a very low yield,” says Dan Mandell, a postdoctoral researcher in George Church’s Harvard University lab.

Scientists can attempt to improve production, but there is often no fast way to know whether they’ve succeeded. Mass spectrometry, for example, is a very sensitive and reliable way to detect small molecule production, says Mandell, but it’s “somewhat cumbersome, expensive, and slow.”

Specific sensors exist for only ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research