Settlement Signal

A marine bacterium generates contractile structures that are essential for the metamorphosis of a tubeworm.

Written byAbby Olena, PhD
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Juvenile Hydroides elegans tubeworm, post-metamorphosisCOURTESY OF BRIAN NEDVEDHydroides elegans is a tiny marine tubeworm that causes millions of dollars in increased fuel costs each year by settling on the hulls of ships and creating drag. Before the organism settles on a surface, though, it must receive an as yet unknown signal to transition from the free-swimming larval stage that precedes settling of the juvenile tubeworm.

Now, researchers have demonstrated that a set of bacterial genes necessary for H. elegans metamorphosis encodes components of structures that resemble the contractile tails of bacterial viruses or phage. These bacterial metamorphosis-associated contractile structures, or MACs, form an organized extracellular array that is required for the switch from free-swimming larva to anchored juvenile tubeworm. The work was published today (January 9) in Science.

“I have no question that this is a benchmark paper in biology,” said Margaret McFall-Ngai, a professor of medical microbiology and immunology at the University of Wisconsin-Madison, who was not involved in the work. “For many, many decades people have been . . . trying to figure out how and why marine larvae settle where they do in the environment.”

Michael Hadfield, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH