Sharing the Wealth

From research results to electronic health records, biomedical data are becoming increasingly accessible. How can scientists best capitalize on the information deluge?

Written byJef Akst
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

© EXDEZ/ISTOCKPHOTO.COMIn February 2013, the US Office of Science and Technology Policy issued a memorandum to federal departments and agencies directing those that contribute more than $100 million annually to research to develop a plan for increasing public access to study findings. Data generated by federally funded research should be made “publicly accessible to search, retrieve, and analyze,” the letter read. The Fair Access to Science and Technology Research (FASTR) Act, introduced to Congress the same month, aims to codify the mandate. The European Commission has similarly recommended, and announced that it would soon require, that its member states pass policies to ensure the digital accessibility of research data supported by public funds.

While these initiatives are being met with some resistance—the Frontiers in Innovation, Research, Science and Technology (FIRST) Act, for example, which would limit public access to federally funded research results, is also currently making its way through the US Congress—there is a clear push for widespread sharing of research findings. This attitude has driven the creation of more than 600 data repositories that enable sharing among the science community and often the public, with more than 200 of those focusing on data from the life sciences. Many universities and research institutions are launching their own repositories, while clinical data from health-care centers, Big Pharma, and even patients themselves are also being made accessible.

“It’s becoming clearer and clearer how important it is to share,” says ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery