Similar Data, Different Conclusions

By tweaking certain conditions of a long-running experiment on E. coli, scientists found that some bacteria could be prompted to express a mutant phenotype sooner, without the “generation of new genetic information.” The resulting debate—whether the data support evolutionary theory—is more about semantics than science.

Written byAshley P. Taylor
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

E. coli populations from the long-term evolution experiment (LTEE). The center population evolved the capacity to use citrate.WIKIMEDIA; BRIAN BAER, NEERJA HAJELASince 1988, Richard Lenski has been propagating the same 12 cultures of E. coli at Michigan State University, observing how they change over time. These cultures are grown on a low-glucose medium that includes citrate. Every day, members of the Lenski lab transfer the cultures to new media at a dilution of 1:100.

The team’s 2008 finding that some of the bacteria could use citrate as a carbon source under aerobic conditions was considered a game-changer—a potential example of how a new species could emerge (E. coli’s inability to metabolize citrate aerobically is one of its defining phenotypic features). Lenski and colleagues attributed the 15-year delay in the appearance of citrate-eating E. coli to the slow accumulation of “potentiating mutations,” genetic changes that provide no discernible advantage at the time but set the stage for future adaptation. Whether a particular culture has a citrate-friendly genetic background depends on its history, the researchers proposed, an idea called historical contingency.

Now, the authors of a study published this month (February 1) in the Journal of Bacteriology suggest that the delay ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies