Similar Data, Different Conclusions

By tweaking certain conditions of a long-running experiment on E. coli, scientists found that some bacteria could be prompted to express a mutant phenotype sooner, without the “generation of new genetic information.” The resulting debate—whether the data support evolutionary theory—is more about semantics than science.

| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

E. coli populations from the long-term evolution experiment (LTEE). The center population evolved the capacity to use citrate.WIKIMEDIA; BRIAN BAER, NEERJA HAJELASince 1988, Richard Lenski has been propagating the same 12 cultures of E. coli at Michigan State University, observing how they change over time. These cultures are grown on a low-glucose medium that includes citrate. Every day, members of the Lenski lab transfer the cultures to new media at a dilution of 1:100.

The team’s 2008 finding that some of the bacteria could use citrate as a carbon source under aerobic conditions was considered a game-changer—a potential example of how a new species could emerge (E. coli’s inability to metabolize citrate aerobically is one of its defining phenotypic features). Lenski and colleagues attributed the 15-year delay in the appearance of citrate-eating E. coli to the slow accumulation of “potentiating mutations,” genetic changes that provide no discernible advantage at the time but set the stage for future adaptation. Whether a particular culture has a citrate-friendly genetic background depends on its history, the researchers proposed, an idea called historical contingency.

Now, the authors of a study published this month (February 1) in the Journal of Bacteriology suggest that the delay ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley P. Taylor

    This person does not yet have a bio.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit