Simplified Magnetogenetics

A new technique allows researchers to rapidly and reversibly activate neurons with a magnetically sensitive protein.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

FLICKR, WINDELL OSKAYFusing a channel protein found in nerve endings with the magnetically sensitive region of an iron-storing protein called ferritin, Ali Güler of the University of Virginia and colleagues have devised a simpler way to selectively activate neurons. The researchers engineered a genetic construct encoding this chimeric channel, termed the Magneto protein, along with short sequences that limit its expression to certain neuron types and direct its insertion into neuronal membranes, then used a virus to deliver the construct into the brains of mice. Applying a magnetic field to slices taken from the animals’ entorhinal cortices, the team successfully activated the channel, allowing an influx of calcium into the cells and triggering a nervous impulse.

The team also tested out the approach in live zebrafish larvae, expressing the Magneto protein in neurons that control the animals’ escape response. Sure enough, exposing the fish to a magnetic field induced coiling movements characteristic of escape behavior. And introducing Magneto into a reward and motivation brain region of mice, the researchers found that the animals spent more time in the magnetized area of their enclosure than in the nonmagnetized portion. Güler and his colleagues published their results earlier this month (March 7) in Nature Neuroscience.

“Previous attempts [using magnets to control neuronal activity] needed multiple components for the system to work—injecting magnetic particles, injecting a virus that expresses a heat-sensitive channel, [or] head-fixing the animal so that a coil could induce changes in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours