Singing In the Brain

His first love was dance, but Erich Jarvis has long courted another love—understanding how the brain learns vocalization.

Written byAnna Azvolinsky
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

ERICH JARIVS
Professor, Rockefeller University, New York City Investigator, Howard Hughes Medical Institute
COURTESY OF ERICH JARVIS
A single laboratory is a lot to manage, yet Erich Jarvis recently moved to New York from Duke University—where he had been a faculty member in the neurobiology department since 1998—to set up four labs. His primary lab at Rockefeller University, devoted to studying the neurogenetics of language, will continue to attempt to genetically engineer vocal-learning circuits in species that don’t possess such a function. It’s located in the same building where Jarvis worked as a graduate student and postdoctoral fellow. Also at Rockefeller, he is setting up a vertebrate genomics lab, along with Olivier Fedrigo, to co-lead the vertebrate Genome 10K and the Bird 10,000 Genomes (B10K) Projects. The third Rockefeller-affiliated lab, located at the university’s field research center in upstate New York, will house a large transgenic bird colony. The fourth lab, at New York City’s Hunter College, will study language function homologies across species, including humans. Jointly with Rockefeller University and Hunter College, Jarvis will also help develop “a program for underrepresented minority students to come and do year-long work in Rockefeller laboratories and in which Rockefeller graduate students and postdocs get experience teaching undergraduates in Hunter courses,” he says.

Jarvis was trained in molecular biology in Rivka Rudner’s lab at Hunter and began his neuroscience career at Rockefeller University in Fernando Nottebohm’s group, using songbird communication as a model system to dissect the molecular biology of speech and vocal learning in the brain. “Rockefeller was a place where I had a lot of scientific freedom. The philosophy there is if there is a high probability of an experiment working, then you’re not doing the right experiment, and if it has a high probability of failure, then it could make a big impact in science. I am looking forward to that scientific environment, which is hard to find. And I am looking forward to being closer to my family. What I am not looking forward ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile

Published In

March 2017

Music

The production and neural processing of musical sounds, from birdsong to human symphonies

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH