Single-Gene Knockout Collection Created

Researchers develop several thousand haploid human cell lines, each with a different gene mutant.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, NATIONAL CANCER INSTITUTEUsing a technique called “gene trapping,” researchers have built a library of haploid human cell lines. The collection includes more than 3,000 lines, each one possessing a different mutated gene, a team led by researchers from the Austrian Academy of Sciences and the Vienna firm Haplogen reports today (August 25) in Nature Methods. “I think this could be quite an interesting resource,” said William Stanford, a professor at the University of Ottawa, who was not involved in the study. “I imagine people would embrace it. It looks very powerful.”

Functional studies of genes can be greatly aided by the use of haploid cell lines—those that have just one of each chromosome, rather than a pair—because the effects of mutations in an allele won't be masked by the other chromosome. “Having a complete knockout, you’ll have much stronger phenotypes compared to other techniques,” said Jan Carette, a Stanford University professor who was not involved in the current study, but who has collaborated with the authors. Human cells, however, are diploid, so to create the haploid cell lines, Sebastian Nijman from the Research Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM) and his colleagues turned to a human cell line called KBM7.

KBM7 originated from a patient with chronic myeloid leukemia, and is ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research