Single-Gene Knockout Collection Created

Researchers develop several thousand haploid human cell lines, each with a different gene mutant.

kerry grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, NATIONAL CANCER INSTITUTEUsing a technique called “gene trapping,” researchers have built a library of haploid human cell lines. The collection includes more than 3,000 lines, each one possessing a different mutated gene, a team led by researchers from the Austrian Academy of Sciences and the Vienna firm Haplogen reports today (August 25) in Nature Methods. “I think this could be quite an interesting resource,” said William Stanford, a professor at the University of Ottawa, who was not involved in the study. “I imagine people would embrace it. It looks very powerful.”

Functional studies of genes can be greatly aided by the use of haploid cell lines—those that have just one of each chromosome, rather than a pair—because the effects of mutations in an allele won't be masked by the other chromosome. “Having a complete knockout, you’ll have much stronger phenotypes compared to other techniques,” said Jan Carette, a Stanford University professor who was not involved in the current study, but who has collaborated with the authors. Human cells, however, are diploid, so to create the haploid cell lines, Sebastian Nijman from the Research Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM) and his colleagues turned to a human cell line called KBM7.

KBM7 originated from a patient with chronic myeloid leukemia, and is ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio