Single-Gene Knockout Collection Created

Researchers develop several thousand haploid human cell lines, each with a different gene mutant.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, NATIONAL CANCER INSTITUTEUsing a technique called “gene trapping,” researchers have built a library of haploid human cell lines. The collection includes more than 3,000 lines, each one possessing a different mutated gene, a team led by researchers from the Austrian Academy of Sciences and the Vienna firm Haplogen reports today (August 25) in Nature Methods. “I think this could be quite an interesting resource,” said William Stanford, a professor at the University of Ottawa, who was not involved in the study. “I imagine people would embrace it. It looks very powerful.”

Functional studies of genes can be greatly aided by the use of haploid cell lines—those that have just one of each chromosome, rather than a pair—because the effects of mutations in an allele won't be masked by the other chromosome. “Having a complete knockout, you’ll have much stronger phenotypes compared to other techniques,” said Jan Carette, a Stanford University professor who was not involved in the current study, but who has collaborated with the authors. Human cells, however, are diploid, so to create the haploid cell lines, Sebastian Nijman from the Research Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM) and his colleagues turned to a human cell line called KBM7.

KBM7 originated from a patient with chronic myeloid leukemia, and is ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems