Sleep Circuit

A web of cell types in one of the brain’s chief wake centers keeps animals up—but also puts them to sleep.

Written byKaren Zusi
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

INTERWEBS: Activating glutamatergic (GLU) neurons optogenetically excites all other labeled cells types in the basal forebrain of a mouse (1). When cholinergic (CHO) neurons are turned on, they inhibit GLU neurons and excite a subtype of GABAergic neurons containing parvalbumin (PV+). They also excite and inhibit somatostatin-containing (SOM+) GABAergic neurons (2). SOM+ neurons, the only cell type less active during REM sleep and waking, inhibit other neuron types (3). PV+ neurons have minimal or no effects on the other cell types (not shown).© KIMBERLY BATTISTAThe paper
M. Xu et al., “Basal forebrain circuit for sleep-wake control,” Nature Neuroscience, 18:1641-47, 2015.

Early studies attempting to untangle the neurological basis of sleep typically removed or injured part of an animal’s brain to measure the effects. The results implicated a region called the basal forebrain in inducing sleep, yet some studies indicated that it was important for arousal. “The impression is that maybe in that region there’s a mixture of mechanisms,” says Yang Dan, a neurobiologist at the University of California, Berkeley. “But that’s not a very satisfactory answer.”

Dan sought to identify which cells in the basal forebrain promote which brain state. The region contains three main types of neurons: cholinergic, glutamatergic, and GABAergic. Dan and her colleagues further classified the GABAergic neurons into those containing somatostatin (SOM+) or parvalbumin (PV+).

The researchers optogenetically activated each of these four cell types in mice to locate them and track their activity. The cholinergic, glutamatergic, and PV+ GABAergic neurons typically fired multiple times per second when the mice were awake or in REM sleep, but less often during non-REM sleep, a sleep stage in which the brain is less aroused overall. In contrast, non-REM sleep was when the SOM+ GABAergic neurons were most active.

Dan’s team then fired a laser pulse to stimulate the different ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control