SNAREs at the Synapse

Using tiny lipid discs, scientists resolve contradictory evidence about how many proteins are required for neurotransmitter release.

Written byMegan Scudellari
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

There is very little about membrane vesicle fusion that Yale University biochemist James Rothman doesn’t know—he codiscovered SNAREs, the proteins that orchestrate the process. But one unanswered question in the field of membrane fusion has been what happens during the first milliseconds of synaptic transmission between neurons—when a vesicle full of neurotransmitters inside a neuron fuses to the cell membrane, opening a pore to release its contents into the synapse.

A fusion pore, the opening that occurs when a vesicle binds to a cell membrane, is present for just hundreds of microseconds, a thousand times shorter than the blink of an eye. Immediately after it opens, the pore rapidly expands as the vesicle membrane melts into the surrounding cell membrane. That quick transition has made it extremely difficult to study the pore, says Rothman. “We thought that if we could find a way to artificially stabilize the fusion pore, without ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH