ISTOCK, BARTOSZ LUCZAKAccording to much of the scientific literature, dominance in social animals goes hand-in-hand with healthier lives. Yet leaders of the pack might not be healthier in all aspects, and according to a study published last week (February 26) in Scientific Reports, they are more at risk of parasite infection.
“While high-ranking animals often have the best access to food and mates, these advantages appear to come with strings attached,” says study coauthor Elizabeth Archie, a behavioral and disease ecologist at the University of Notre Dame, in an email to The Scientist. “These strings take the form of higher parasite exposure and susceptibility.”
Lower social status is usually linked to poorer health, according to previous studies. Animals towards the bottom of hierarchies have to struggle more for resources, and are often subjected to aggressive behavior from their superiors. In many species of birds,...
Yet the relationship between social subordination and infectious disease risk hasn’t been clearly measured, according Archie and her coauthors. To look at the relationship between social status and one particular malady—parasite infections—they carried out a meta-analysis of 39 studies spanning 31 species, searching for patterns of parasitism.
In the majority of studies, those individuals in dominant positions—in particular, dominant males—were found to be more at risk of being infected. The effect was strongest in mammals, and in ordered hierarchical societies where social status is correlated with sexual activity.
High status comes with so many other advantages that the cost of a few more parasites might not be enough for individuals to shun high social status.—Elizabeth Archie,
University of Notre Dame
These findings support two previous hypotheses about the links between social status and parasitism. One relates infection risk to resource access: exposure to infection is more common when animals feed and mate more. Dominant reindeer, for example, spend more time eating than subordinate individuals, and are more likely to become infected by nematodes. And greater sexual activity brings more risk of transmitted infections. Take, for instance, dominant feral cats, whose sexual proclivity increases the chances of developing Feline Immunodeficiency Virus.
The other hypothesis proposes a trade-off between reproductive effort and immunity to disease. In other words, those in dominant positions expend more energy on mating, and therefore invest less into costly immune defences.
“When you put it in the context [of these hypotheses], it does make a lot of sense,” says Jennifer Koop, a biologist at the University of Massachusetts-Dartmouth, who was not involved in the study.
Archie doesn’t think that individuals will deliberately opt for lower status in order to avoid infection. “High status comes with so many other advantages that the cost of a few more parasites might not be enough for individuals to shun high social status,” she says.
It’s also conceivable that there are benefits to both parasite and host in this relationship, says Nicole Mideo, an evolutionary biologist at the Univeristy of Toronto, who was not involved in the study. “The parasites are exploiting the resources of the host, so if you have a host that doesn’t get access to much food, then the parasite isn’t going to get access to much food,” she says.
This study mostly focused on parasitic worms, a limitation the researchers want to expand beyond. Additionally, the toll on dominant animals’ health of the increased risk of parasite infections was not explored. Mideo explains that there could be subtle advantages here, as research has shown worms can alter immune systems, and might protect against other infections. “It’s entirely possible that having worm infections does confer some sort of advantage in the context of other potential diseases,” she says.
B. Habig et al., “Social status and parasitism in male and female vertebrates: a meta-analysis,” Scientific Reports, doi:10.1038/s41598-018-21994-7, 2018.