Sperm Shadows

Tracking the shadows cast by sperm reveals their precise 3-D movements.

Written byRuth Williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

SWIMMING LESSONS: Two differently angled light sources (red and blue) create shadows cast by a sperm moving across a photosensitive chip. Determining the distance between the center points of the shadows and their position relative to the light sources enables the sperm’s 3-D location to be calculated.GEORGE RETSECKDIFFERENT STROKES: Using the tracking technique, researchers discovered that more than 90% of human sperm swim forward with small side-to-side movements, while approximately 5% swim in a faster-paced helical pattern. The remaining sperm swim in a hyper-activated or hyper-helical manner, where the sperm are more active but less directional.COURTESY OF AYDOGAN OZCAN WITH PERMISSION FROM PNAS 109:16018-22, 2012

Human sperm are very tiny and swim very fast, which has made tracking their movements difficult. But now there is a solution—an unusual imaging system that not only doesn’t use a lens, it doesn’t even image sperm. Instead, it tracks their shadows.

Microscopes that use lenses have limited fields of view and depths of field, explains Aydogan Ozcan of the University of California, Los Angeles, who devised the new system. “That puts a limit on observing [sperm’s] natural three-dimensional trajectories,” he says.

His new system uses a photo sensor chip instead of a lens to increase the field of view, and tracks sperm’s shadows instead of the sperm themselves to increase depth of field. “Even if a sperm is moving up and down, you can ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research