Sperm Shadows

Tracking the shadows cast by sperm reveals their precise 3-D movements.

Written byRuth Williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

SWIMMING LESSONS: Two differently angled light sources (red and blue) create shadows cast by a sperm moving across a photosensitive chip. Determining the distance between the center points of the shadows and their position relative to the light sources enables the sperm’s 3-D location to be calculated.GEORGE RETSECKDIFFERENT STROKES: Using the tracking technique, researchers discovered that more than 90% of human sperm swim forward with small side-to-side movements, while approximately 5% swim in a faster-paced helical pattern. The remaining sperm swim in a hyper-activated or hyper-helical manner, where the sperm are more active but less directional.COURTESY OF AYDOGAN OZCAN WITH PERMISSION FROM PNAS 109:16018-22, 2012

Human sperm are very tiny and swim very fast, which has made tracking their movements difficult. But now there is a solution—an unusual imaging system that not only doesn’t use a lens, it doesn’t even image sperm. Instead, it tracks their shadows.

Microscopes that use lenses have limited fields of view and depths of field, explains Aydogan Ozcan of the University of California, Los Angeles, who devised the new system. “That puts a limit on observing [sperm’s] natural three-dimensional trajectories,” he says.

His new system uses a photo sensor chip instead of a lens to increase the field of view, and tracks sperm’s shadows instead of the sperm themselves to increase depth of field. “Even if a sperm is moving up and down, you can ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH