Spider and Centipede Venom Remarkably Similar

The predatory toxins employed by animals separated by millions of years of evolution are virtually identical, a study shows.

Written byBob Grant
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The hobo spiderWIKIMEDIA, JUDGEKINGSpiders and centipedes don’t have a whole lot in common, at least in terms of evolution. The eight-legged arachnids diverged from other arthropods, including insects, about 400 million years ago, developing structures, behaviors, and ecological niches all their own. But a team of researchers has found that at least some spider and centipede species share molecular architecture in their venom proteins thanks to convergent evolution. University of Queensland structural biologist Glenn King and his coauthors reported yesterday (June 11) in Structure that an insulin-like protein in the venom of hobo spiders (Eratigena agrestis) and some centipede species has a very similar molecular structure to the hormone from which both compounds evolved. Even though the genetic sequences of the toxins and the hormone are very different, similarity in the structure of the two pointed to a shared evolutionary history. “If you take the sequence of the spider toxin and you do a BLAST search, the hormone is so different now that you don’t pull it out,” King said in a statement. “But when we did a structural search and it pulled up the hormone, that’s what really surprised us—the sequence didn’t tell us where the toxins evolved from, but the structure did pretty clearly.”

Aside from the evolutionary insight into arthropod venom, the findings may point the way to better ways to control pests. “It may be that this toxin could be a very effective insecticide,” Jessica Garb, an evolutionary biologist at the University of Massachusetts, Lowell, told Science. “People have proposed they could be green insecticides.” Properties of the toxin, such as its water solubility, make it a promising insecticide candidate and, with further manipulation of its structure, King and his colleagues are exploring the protein’s potential in other agricultural or medical contexts.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer. Before joining the team, he worked as a reporter at Audubon and earned a master’s degree in science journalism from New York University. In his previous life, he pursued a career in science, getting a bachelor’s degree in wildlife biology from Montana State University and a master’s degree in marine biology from the College of Charleston in South Carolina. Bob edited Reading Frames and other sections of the magazine.

    View Full Profile
Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies