Stem Cells Not Needed for Cancer

Fully developed neurons can revert to stem cell-like states and give rise to brain tumors.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Glioma (green) in mouse brain. Image by Eric Bushong.The prevailing view that stem cells are the principle originators of brain cancer may be incorrect, according to a report out today (October 18) in Science. The new study suggests that terminally differentiated brain cells, including neurons, can be reprogrammed by oncogenic factors to become progenitor-like cells that then develop into brain tumors, or gliomas.

“What’s provocative about these experiments is that they challenge the notion that only stem cells can give rise to cancers of the brain,” said David Gutmann, a professor of neurology at Washington University in St Louis, Missouri, who did not participate in the study. “While we were all very excited 10 years ago when the cancer stem cell hypothesis came out, I think it was perhaps wishful thinking for us to believe that that was the only path to cancer.” The researchers were “able to demonstrate that you can get gliomas from these terminally differentiated neurons,” agreed Ronald DePinho, president of the MD Anderson Cancer Center at the University of Texas, Houston. “[The finding] is very exciting and basically teaches us that cells maintain an ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies