Stressed Blood Cells Could Be a Biomarker for Chronic Fatigue

In a small study, researchers devise a test that could distinguish healthy people from those with the syndrome, also known as myalgic encephalomyelitis.

Written byShawna Williams
| 2 min read
a man holding a small electronic chip

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: A diagnostic device for ME/CFS that measures changes in electrical impedance in blood cells
R. ESFANDYARPOUR

A distinguishing characteristic of the disease myalgic encephalomyelitis/chronic fatigue syndrome appears to be the electrical response of patients’ blood cells when under stress, researchers report today (April 29) in PNAS. The team hopes the finding will speed diagnoses for people with the condition and facilitate research on it.

The University of California, San Diego’s Robert Naviaux, a genetics professor who was not involved in the research, tells the San Francisco Chronicle, “It’s a major milestone. If it holds up in larger numbers, this could be a transformative advance.”

Up to 2.5 million Americans are thought to have myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), whose symptoms can include severe fatigue that isn’t explained by exertion, pain, and difficulties concentrating or remembering. It is currently diagnosed based on symptoms, as no biomarker for it exists.

To see ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor’s degree in biochemistry from Colorado College and a graduate certificate in science communication from the University of California, Santa Cruz. Previously, she worked as a freelance editor and writer, and in the communications offices of several academic research institutions. As news director, Shawna assigned and edited news, opinion, and in-depth feature articles for the website on all aspects of the life sciences. She is based in central Washington State, and is a member of the Northwest Science Writers Association and the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH