Sunflowers’ Bee-Attracting Ultraviolet Also Helps Retain Moisture

The dual purposes of the plants’ hidden colors may conflict as the climate warms, authors of a new study suggest.

Written byNatalia Mesa, PhD
| 5 min read
Sunflowers, in visible spectrum on left half (yellow colors) and UV spectrum on right half (purple and white colors).
Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

In late summer, from southern Canada to northern Mexico, seas of sunflowers bloom in fields and farms. The flowers, which grow at the top of long, one- to three-meter stems, appear to us to be somewhat uniform, with bright yellow rings of petals adorning brown irises. But bees and other pollinators—which can perceive ultraviolet colors—instead see bullseyes that are darker in the middle and lighter at the edges.

According to a study published January 18 in eLife, these patterns not only help attract pollinators, the compounds that create them also appear to regulate water loss—potentially helping sunflowers adapt to their environments. The researchers also found a single gene region responsible for the size of the bullseye.

“It shows how smart evolutionary adaptation can be, to use the same trait to do two very different things that are both very important for the plant,” Marco Todesco, a plant geneticist at the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot

    As she was completing her graduate thesis on the neuroscience of vision, Natalia found that she loved to talk to other people about how science impacts them. This passion led Natalia to take up writing and science communication, and she has contributed to outlets including Scientific American and the Broad Institute. Natalia completed her PhD in neuroscience at the University of Washington and graduated from Cornell University with a bachelor’s degree in biological sciences. She was previously an intern at The Scientist, and currently freelances from her home in Seattle. 

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel